www.DocNorma.Ru |
Федеральный горный и промышленный надзор России
(Госгортехнадзор России)
Серия 09
Нормативные
документы по безопасности,
надзорной и разрешительной деятельности
в химической, нефтехимической и
нефтеперерабатывающей промышленности
Выпуск 4
МЕТОДИКА
РАСЧЕТА ЗОН ЗАТОПЛЕНИЯ ПРИ
ГИДРОДИНАМИЧЕСКИХ АВАРИЯХ
НА ХРАНИЛИЩАХ ПРОИЗВОДСТВЕННЫХ
ОТХОДОВ ХИМИЧЕСКИХ ПРЕДПРИЯТИЙ
РД 09-391-00
Москва
Государственное
унитарное предприятие
«Научно-технический центр по безопасности в промышленности
Госгортехнадзора России»
Методика предназначена для расчета зон затопления и количественной оценки уровня безопасности при гидродинамической аварии на эксплуатируемых и проектируемых хранилищах шламов, жидких производственных отходов, стоков и технических вод.
СОДЕРЖАНИЕ
Утверждена
постановлением Госгортехнадзора
России от 04.11.00 № 65
Введена в действие 04.11.00
МЕТОДИКА РАСЧЕТА ЗОН ЗАТОПЛЕНИЯ ПРИ ГИДРОДИНАМИЧЕСКИХ АВАРИЯХ НА ХРАНИЛИЩАХ ПРОИЗВОДСТВЕННЫХ ОТХОДОВ ХИМИЧЕСКИХ ПРЕДПРИЯТИЙ
РД 09-391-00
Методика предназначена для расчета зон затопления и количественной оценки уровня безопасности при гидродинамической аварии на эксплуатируемых и проектируемых хранилищах шламов, жидких производственных отходов, стоков и технических вод (далее - хранилища).
При разработке Методики расчета зон затопления при гидродинамических авариях на хранилищах производственных отходов химических предприятий (далее - Методика) учтены требования следующих документов:
Федерального закона Российской Федерации от 21.07.97 № 117 «О безопасности гидротехнических сооружений*»;
* Далее - ГТС.
Постановления Правительства Российской Федерации от 06.11.98 № 1303 «Об утверждении положения о декларировании безопасности гидротехнических сооружений».
В Методике учтены особенности хранилищ отходов химического промышленного комплекса, в том числе:
наличие в хранилищах высокотоксичных и токсичных веществ, веществ, представляющих опасность для окружающей природной среды (далее - вредные вещества);
размещение хранилищ на местности с относительно плавными формами рельефа недалеко от поверхностных водоемов, на промплощадках предприятий, в непосредственной близости от населенных пунктов и сельскохозяйственных угодий;
устройство ограждающих дамб из песчаных, супесчаных и суглинистых грунтов.
Методика может быть использована для расчета зон затопления и количественной оценки уровня безопасности при авариях на хранилищах предприятий других отраслей промышленности.
1.1. При аварии на хранилищах отходов и стоков происходит разрушение ограждающих дамб и разлив содержимого хранилищ, вызывающий:
затопление окружающих территорий, в том числе мест временного или постоянного присутствия человека, зданий и сооружений;
распространение волной прорыва вредных веществ, которое приводит к загрязнению почв и земель, грунтовых вод, поверхностных водоемов, источников питьевого водоснабжения.
1.2. Опасность аварий определяется последствиями возникающих чрезвычайных ситуаций (ЧС).
1.3. При разработке Методики использованы традиционные положения теории русловых процессов, безнапорного гидротранспорта грунтов, а также Рекомендации по расчету охранных зон хвостохранилищ, выпущенные ВНИИПИ механической обработки полезных ископаемых (МЕХАНОБР) в 1984 году [1 - 7].
1.4. Методика позволяет определить показатели, характеризующие аварию и ее последствия:
границы зоны затопления;
время образования прорана (время от начала до полного истечения жидкости из хранилища);
размеры прорана;
расходы и объемы жидких отходов, выливающихся по мере развития прорана;
высота, скорость и гидродинамическое давление волны прорыва по пути движения;
параметры загрязнения вредными веществами почвы, грунтовых и поверхностных вод;
показатели последствий аварий по воздействию волны прорыва на человека, здания и сооружения;
показатели последствий аварий по воздействию на окружающую природную среду.
1.5. Методика предназначена для использования:
предприятиями и организациями, эксплуатирующими хранилища;
проектными и экспертными организациями;
другими организациями, по роду своей деятельности связанными с обеспечением безопасности хранилищ;
при декларировании безопасности ГТС;
при определении возможности дальнейшей эксплуатации хранилищ и других работах, в которых требуется количественная оценка уровня безопасности.
1.6. Полученные показатели последствий аварии могут быть использованы при оценке ущерба окружающей природной среде, материальных потерь, границ зон поражающих факторов и классификации ЧС.
1.7. Основные термины и определения, используемые в методике.
Затопление - повышение уровня воды водотока, водоема или подземных вод, приводящее к образованию свободной поверхности воды на участке территории [8, 9].
Катастрофическое затопление - территория, на которой затопление имеет глубину 1,5 м и более и может повлечь за собой разрушения зданий и сооружений, гибель людей, вывод из строя оборудования предприятий [10].
Зона затопления - зона, в пределах которой происходит движение потока, образующегося при разрушении дамбы (плотины) [8, 11].
Почва - природное образование, слагающее поверхностный слой земной коры и обладающее плодородием [12, 13].
Плотность сухого грунта - отношение массы сухого грунта (исключая массу воды в его порах) к его первоначальному объему [14].
Плотность частиц грунта - масса единицы объема грунта без учета пор или масса единицы объема твердых частиц грунта [14].
Вода грунтовая - гравитационная вода первого от поверхности земли постоянно действующего водоносного горизонта, расположенного на первом водоупорном слое [13].
Коэффициент фильтрации - скорость фильтрации воды при градиенте напора, равном единице, и линейном законе фильтрации [14].
Градиент напора - отношение разности напора воды к длине пути фильтрации [14].
Инфильтрация - проникновение атмосферной или поверхностной воды в породы и почвы [14].
Авария - опасное техногенное происшествие, создающее угрозу жизни и здоровью людей, приводящее к разрушению зданий, сооружений, оборудования и транспортных средств, нарушению производственного и транспортного процесса, нанесению ущерба окружающей природной среде [8, 15, 16].
Гидродинамическая авария - авария на ГТС, связанная с распространением с большой скоростью воды и создающая угрозу возникновения чрезвычайной техногенной ситуации [8, 15, 16].
Чрезвычайная ситуация - обстановка на определенной территории, сложившаяся в результате аварии на ГТС, которая может повлечь или повлекла за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушение жизнедеятельности людей [8, 16].
Предельно допустимая концентрация - максимальная концентрация, при которой вещество не оказывает прямого или опосредованного влияния на состояние здоровья населения (при воздействии на организм в течение всей жизни) и не ухудшает гигиенические условия водопользования [8].
Опасные отходы - отходы, которые в силу их реакционной способности или токсичности представляют непосредственную или потенциальную опасность для здоровья человека или состояния окружающей среды самостоятельно или при вступлении в контакт с другими отходами и окружающей средой [8].
Загрязняющие вещества - химические соединения, повышенное содержание которых в биосфере и ее компонентах вызывает негативную токсико-экологическую ситуацию [8].
Прудок-отстойник - водоем, в котором происходит осветление в процессе намыва [8].
* Отходы - жидкие производственные отходы, стоки и технические воды.
2.1.1. Процесс разрушения хранилища, образования прорана и движения образующегося при этом потока отходов является сложным. Неравномерный и неустановившийся характер движения потока по всей трассе растекания обусловливают переменные значения его гидродинамических параметров [1 - 7], поэтому для упрощения расчетов рассматриваемый процесс разделяется в расчетном отношении на два этапа:
1) расчет образования прорана и расчет параметров потока в сечении у подошвы откоса дамбы;
2) расчет максимальных параметров потока по трассе растекания.
2.1.2. В Методике приняты следующие допущения:
расчет производится для глубины слоя жидкости и неконсолидированных отходов не менее 25 см;
отходы в хранилище могут представлять собой однородный или неоднородный состав;
поперечное сечение прорана принимается прямоугольным и постоянным по всей длине прорана;
после образования прорана жидкость растекается по местности, имеющей естественный уклон;
гидравлический прыжок, возникающий на переходе потока с участка с уклоном дна больше критического на участок, где уклон меньше критического, - не рассматривается [17, 18].
2.2.1. В расчетах приняты следующие основные обозначения:
Нmax - максимальная глубина вытекающего из прудка слоя жидкости и несконсолидированных отходов, м;
F - площадь хранилища по максимальной отметке гребня дамбы, м2;
Vmax - полный объем отходов в хранилище, м3;
l0 - ширина гребня дамбы, м;
mотк - заложение внутреннего откоса дамбы*, м/м;
* Отношение длины горизонтальной проекции откоса к высоте откоса.
nотк - заложение внешнего откоса дамбы, м/м;
ρs - плотность частиц грунта, т/м3;
- плотность жидкости в поверхностном слое, т/м3;
- плотность жидкости в слое, расположенном на глубине, равной ½ толщины слоя жидкости и несконсолидированных отходов, т/м3;
- плотность жидкости в придонном слое, т/м3;
ρd - средняя плотность сухого грунта тела дамбы, т/м3 [7];
vв - кинематический коэффициент вязкости жидкости в поверхностном слое, см2/с;
vc - кинематический коэффициент вязкости жидкости в слое, расположенном на глубине, равной ½ толщины слоя жидкости и несконсолидированных отходов, см2/с;
vн - кинематический коэффициент вязкости жидкости в придонном слое, см2/с (для воды кинематический коэффициент вязкости равен 0,0101 см2/с);
d - средневзвешенный размер частиц грунта, мм.
2.2.2. Подготовка исходных данных для расчета на первом этапе
2.2.2.1. Исходными данными для расчета являются:
максимальная глубина вытекающего из прудка слоя жидкости и несконсолидированных отходов;
площадь хранилища по максимальной отметке гребня дамбы;
ширина гребня дамбы;
заложение внутреннего откоса дамбы;
заложение внешнего откоса дамбы;
плотность частиц грунта;
средневзвешенный размер частиц грунта.
2.2.2.2. Вычисление средневзвешенного размера частиц грунта. Для этого производятся замеры размера частиц грунта:
для наливных хранилищ - на дамбе;
для комбинированных (наливных + намывных) и намывных - на первичной насыпной и на намывной дамбах.
Определяются среднее значение диаметра частиц грунта dсp и стандартное отклонение измерений σd:
(2)
где di - диаметр i-й выделенной фракции частиц грунта, определяемый по гранулометрическому анализу, мм;
п - количество измерений.
Из формул (1) и (2) получаем выражение для определения средневзвешенного размера частиц грунта
где tst - квантиль распределения Стьюдента с доверительной вероятностью 0,95 [19].
2.2.2.3. Плотность жидкости ρжj в j-м слое для отходов с неоднородным составом определяется по следующей формуле:
где хj - расстояние от поверхности жидких отходов до рассматриваемого j-го слоя, м;
H - высота слоя жидкости и несконсолидированных отходов, м.
Для отходов с однородным составом j = 1.
2.2.2.4. Кинематический коэффициент вязкости жидкости vj в j-м слое для отходов с неоднородным составом определяется по следующей формуле:
(6)
Для отходов с однородным составом j = 1.
Вывод формул (4) - (7) приведен в приложении 1.
За начальные условия расчета размыва элементарного прорана принимается равенство
y0 = b0 = h0 = 0,1Hmax, (8)
где у0 - начальная глубина прорана;
b0 - начальная ширина прорана;
h0 - начальная глубина потока.
На рис. 1 представлена схема расчета размыва гребня и пляжной зоны хвостохранилища.
Рис. 1. Схема расчета размыва прорана
Задавая приращение глубины прорана на каждом расчетном шаге постоянным и равным Dу £ у0, определяется приращение ширины прорана
2.2.3. Задавая приращения размеров прорана (Dy и Db), определяем уменьшение глубины вытекающего из прудка слоя DH. Расчет ведется методом итераций.
Определение параметров размыва прорана и потока производится в расчетный i-й промежуток времени:
глубина прорана yi = уi-1 + Dy; (10)
ширина прорана bi = bi-1 + Db; (11)
длина прорана, м, li = (mотк + потк)уi + l0. (12)
При достижении уi = Hmax принимается, что увеличение прорана осуществляется только за счет его расширения:
Глубина потока в проране, м, (15)
где Hi определяется по формуле (37).
Расход потока в проране, м3/с [4]:, (16)
где т - коэффициент водослива, принимаемый равным 0,31.
Удельный расход потока в проране, м2/с, . (17)
Скорость потока в проране, м/с, . (18)
Неразмывающая скорость и0, м/с, определяется для заданного значения dср и гидравлических параметров потока производится по зависимостям В.С. Кнороза [20]:
для 0,1 мм < d £ 0,25 мм ; (19)
для 0,25 мм < d < 1,5 мм ; (20)
где k = 0,785d0,75;
g - ускорение силы тяжести (g = 981 см/с2);
Ri - гидравлический радиус потока для прямоугольного сечения прорана, определяемый по формуле:
(22)
ρ'j - относительная плотность жидких отходов j-го слоя, которая определяется как
Для частиц грунтов с d < 0,1 мм при определении значения неразмывающей скорости необходимо учитывать силы сцепления между частицами грунта. Значение и0 рекомендуется определять по нормативно-справочной литературе [17].
Величина гидравлической крупности W0, м/с, для размываемых грунтов в проране определяется в зависимости от диаметра частиц грунта по формулам [20]:
при 0,1 мм < d < 0,6 мм (25)
при 0,6 мм < d < 2,0 мм (26)
где g - ускорение силы тяжести (g = 981 см/с2).
Время размыва элементарного объема прорана, с:
(28)
где µi - транспортирующая (размывающая) способность потока;
DWi - увеличение объема размытого прорана, м3:
DWi = Wi - Wi-1 = 0,5(biyili - bi-1yi-1li-1). (29)
В зависимости от гидравлических параметров потока и диаметра частиц размываемого грунта они могут переноситься потоком либо во взвешенном, либо в донном состоянии.
Если скорость потока иi ³ 2,7и0i и все частицы d £ 0,15 мм (переносятся во взвешенном состоянии), то величина µi может быть определена как [1]:
(30)
где икр - критическая скорость потока, м/с, определяется:
при yi < Hmax икрi = 2,63hi0,5; (31)
при yi = Hmax икрi = 3,77hi0,2; (32)
Если иi < 2,7и0i и все частицы d > 0,15 мм (движутся в донном режиме), то величина µi определяется по формуле [1]:
(33)
где g - ускорение силы тяжести (g = 9,81 м/с2).
Объем жидкости, вытекающей из прудка за время Dti:
Общий объем, вытекший за время Т = ΣDti:
Понижение уровня в прудке
Глубина слоя, вытекающего из прудка:
Hi = Hi-1 + Dy - DHi-1. (37)
При i = 1 принимаем, что H0 = у0 и DH0 = 0.
Расчет ведется до того момента, когда V достигает значения Vmах или величина транспортирующей способности µi установится меньше 0,003.
Для удобства все результаты расчетов представляются в табличной форме.
Для определения значений скорости U и глубины h потока по внешнему откосу дамбы из результатов расчетов, полученных в п. 2.2.3, выбираются:
максимальное значение полного расхода Qmax и соответствующие ему значения ширины b11 и глубины h11 (вариант 1);
максимальное значение удельного расхода qmax и соответствующие ему значения ширины b12 и глубины h12 (вариант 2);
максимальное значение ширины прорана bmax.
Расчет по выбранным параметрам производится одновременно для Qmax и qmax.
2.3.1. Для определения формы свободной поверхности потока [4] необходимо сравнить величину нормальной глубины h0 с критической глубиной hкp и значение уклона внешнего откоса дамбы iво со значением критического уклона iкр.
Определение критической глубины потока, м,
(38)
* Здесь и далее по тексту формулы в левой колонке относятся к первому варианту расчета, в правой - ко второму.
где α - коэффициент кинетической энергии, принимается равным 1,1;
g - ускорение силы тяжести (g = 9,81 м/с2).
Нормальная глубина h0 потока вычисляется в процессе итерационной процедуры (подбором) по значению модуля расхода К0:
вычисляется модуль расхода [4]:
где
Задавая различные значения h1 (h2)*, определяем характеристики потока:
* Здесь и далее по тексту значения параметров, указанных в скобках, относятся ко второму варианту расчета.
площадь сечения, м2,
смоченный периметр потока
x1 = b11 + 2h1, x2 = b12 + 2h2; (41)
гидравлический радиус
коэффициент Шези
где n - коэффициент шероховатости, принимаемый равным 0,025 [4];
значение расчетного модуля расхода Кr:
Подставляя значения параметров, определяемых по уравнениям (40) - (43), в выражения (44), получим
(45)
Результаты расчетов и значения h1 (h2) заносятся в таблицу. Значение h1 (h2), при котором расчетный модуль расхода Кr1 ≈ К01 (Кr2 ≈ К02), и будет значением нормальной глубины потока h01 (h02).
Величина критического уклона определяется по формуле [4]:
(46)
Подставляя значения параметров, определяемых по уравнениям (40) - (43) при условии h = hкр, в выражения (46), получим
где bкр1 = b11, bкр2 = b12.
В зависимости от глубины потока в начале откоса h11 (h12) и соотношения iво ‹› iкр2 (iво ‹› iкр2) и h01 ‹› hкр2 (h02 ‹› hкр2) определяется форма свободной поверхности потока [4, 17, 18].
2.3.2. Определение глубины потока в сечении у подошвы откоса
Из полученных значений h11, h01, hкр1 (h12, h02, hкр2) выбирается наибольшее и наименьшее значение глубины потока [hmax1, hmin1 (hmax2, hmin2)] и вычисляется среднее значение:
(48)
Определяем длину откоса L, на которой устанавливается нормальная глубина h01 (h02) [6]:
(49)
(50)
где bcр1 = b11, bcр2 = b12;
ηij - относительная глубина (для каждого из вариантов) определяется:
(51a)
(51б)
По величинам гидравлических показателей русла Х1 (Х2) и относительным глубинам находятся функции относительной глубины φ(η11), φ(η12) и φ(η21), φ(η22) (см. приложение 2). Гидравлический показатель русла определяется по формулам [6]:
Полученные в уравнении (49) величины L1 и L2 сравниваются с длиной внешнего откоса дамбы L0. Если полученное значение L1 < L0 (L2 < L0), то считается, что глубина потока у подошвы откоса равна нормальной глубине h01 = h11 и h02 = h12. Если же значение L1 > L0 (L2 > L0), тогда, задавая L1 = L0 (L2 = L0), из уравнения (49) определяем глубину потока у подошвы откоса:
2.3.3. Определение скорости потока в сечении у подошвы откоса дамбы
Скорость и определяется по известному расходу и глубине потока в сечении у подошвы откоса:
Из полученных расчетов из двух случаев выбираем максимальные значения параметров потока в сечении у подошвы откоса: глубины hmax и скорости иmax. Ширина потока в этом сечении принимается равной максимальной ширине прорана bmax. Эти величины являются исходными для расчета движения потока по прилегающей к хранилищу местности.
В зависимости от характера рельефа вытекающий из хранилища поток может быть ограничен боковыми склонами долины, либо растекание может происходить нестесненным образом, если хранилище расположено на плоской местности или в широкой долине.
Учитывая, что хранилища предприятий химической, нефтехимической и нефтеперерабатывающей промышленности в основном относятся к овражным, овражно-пойменным и (или) равнинным типам и имеют емкость до нескольких млн. м3, принимаем, что вытекающий поток ограничен постоянным значением боковых склонов ложбин, лога или слабонаклоненных поверхностей поймы или равнины.
В расчете принято допущение о том, что лог по всей длине трассы растекания имеет треугольное сечение.
Для определения параметров потока по трассе растекания русло потока разбивается на участки с постоянными уклонами дна и формой поперечного сечения. На границах участков принимается условие равенства расходов. За расчетное принимается максимальное значение расхода потока Qп = Qmax, полученное в результате расчета на первом этапе.
Для расчета площади сечения лога на концах выбранных участков задаются характерные абсолютные отметки бортов Аб и дна Aд лога (см. рис. 2).
Для определения формул расчета скорости иi, глубины hi и ширины bi потока [4] вычисляются уклоны i-х участков лога Iлi
Iлi = Lлi / (Aдi - Aдi-1),
где Lлi - длина выбранного i-го участка лога.
Рис. 2. Поперечное сечение лога
Для уклонов Lлi < 0,01 параметры потока определяются:
где - относительное расстояние; (58)
bi = hi(m'лi + m'пi),
здесь m'лi = ctg αл и m'пi = ctg αп (см. рис. 2).
При i = 0: b0 = bmax, l0 = 0,
где m'л0 и m'п0 - заложения левого и правого откосов лога у подошвы откоса дамбы соответственно.
Гидродинамическое давление Pi на сооружения, расположенные на пути потока на расстоянии l от подошвы дамбы, вычисляется по формуле
где ρ0 - средняя плотность потока.
Для защиты объектов, попадающих в зону затопления, можно отвести поток через какое-либо пропускное сооружение (водоотводной канал), находящееся на расстоянии l от подошвы дамбы, расчет которого ведется по условию пропуска максимального расхода потока Qп. Поперечное сечение Sk, обеспечивающее отвод потока, рассчитывается по значению скорости и в этом месте и по максимальному расходу:
Приведенные выше формулы позволяют рассчитать параметры потока по длине выбранной расчетной трассы движения на прилегающей к хранилищу местности, нанести их на соответствующий план или карту и определить границы зоны затопления.
Ввиду сложности расчетов и большого числа итераций в ЗАО «Экоцентр-Агрохимбезопасность» разработан комплекс компьютерных программ «PRORAN».
2.5.1. Для проведения расчетов приняты следующие допущения:
инфильтрация жидкой фазы на площади затопления через почву и грунт - свободная, т.е. фильтрация происходит без подпора со стороны грунтовых вод;
не учитывается вода, остающаяся в почвенно-растительном слое и в естественных впадинах и понижениях по трассе потока;
не учитывается дифференциация загрязнения по мощности и площади почв, грунтового потока, акватории водоемов.
2.5.1.1. При определении степени загрязнения почвы принимается, что вся масса вредных веществ из профильтровавшейся с поверхности жидкости остается в почвенном слое и распределяется равномерно по глубине слоя и площади затопления.
При расчете не учитывается, что часть вредных веществ из профильтровавшихся стоков, не задерживаясь в почвенном слое, попадает в грунтовые воды.
2.5.1.2. При определении степени загрязнения грунтовых вод принимается, что вся масса вредных веществ из профильтровавшейся с поверхности жидкости попадает в грунтовые воды и распределяется равномерно по мощности грунтового потока и площади затопления.
При расчете не учитывается, что часть вредных веществ из профильтровавшихся стоков останется в почве.
2.5.1.3. При определении параметров загрязнения поверхностных водоемов принимается, что вся масса вредных веществ, содержащихся в вытекшей из хранилища жидкости, распределяется равномерно:
для замкнутых поверхностных водоемов - по всему объему водоема;
для проточных поверхностных водоемов - по сечению водоема.
При расчете не учитывается, что часть вредных веществ из профильтровавшихся в грунтовые воды стоков останется в почве и водоносных грунтах.
2.5.2. Расчет параметров загрязнения почвы [21 - 27]
Объем профильтровавшейся с поверхности почвы жидкости Vф, м3, определяется по формуле
где Кф - коэффициент фильтрации почвенного слоя, м/сут, определяется по данным изысканий;
J - градиент инфильтрационного потока;
Fф - площадь фильтрации, м2, Fф = Fз, здесь Fз - площадь затопления при максимальных значениях параметров волны от хранилища до водной преграды (реки, озера, водоотводящего канала);
Тф - время фильтрации жидкости, сут, которое определяется:
здесь k' - коэффициент, характеризующий время, при котором расход потока в проране больше 0,7Qmax, и определяемый по зависимости Q = f / (Т), полученной по результатам расчетов в п. 2.2.3 (для расчетов рекомендуется принимать k' = 0,3);
Т - время образования прорана, сут (см. п. 2.2.3);
U′ср и U″ср - средние рассчитанные значения скоростей потока в проране (см. п. 2.2.3) и по трассе растекания (см п. 2.4).
Значение Vф не должно превышать общего объема V, вытекшего из хранилища жидкости [см. формулу (35)].
Для каждого i-го вредного вещества, содержащегося в жидких отходах, вычисляется концентрация вредного вещества в почве Сiп, мг/кг, на площади Fф:
где Сi - концентрация i-го вредного вещества в жидких отходах, мг/л;
Мп - мощность почвенного слоя, м;
- плотность сухого почвенно-грунтового слоя, т/м3;
- фоновая концентрация i-го вещества в почве, мг/кг. Параметры Мп и определяются по данным изысканий.
Полученная концентрация сравнивается с ПДК данного вещества в почве (см. приложение 3).
При отсутствии конкретных исходных данных для ориентировочных оценок рекомендуется пользоваться следующими значениями параметров:
Мп = 0,5 - 1,0, м;
= 1,4 - 1,6, г/см3;
= 0.
2.5.3. Расчет параметров загрязнения грунтовых вод [21 - 27]
Объем профильтровавшейся с поверхности жидкости определяется по формуле (61). Для каждого i-го вредного вещества, содержащегося в жидких отходах, вычисляется концентрация вещества в грунтовых водах , мг/л, в зоне затопления:
где - концентрация вещества в грунтовых водах до гидродинамической аварии (фоновая концентрация), мг/л;
mгв - мощность грунтового потока, м;
пг - пористость водоносных грунтов.
Параметры , mгв и пг определяются по данным изысканий. Полученная концентрация сравнивается с ПДК данного вещества в воде (см. приложение 4).
2.5.4. Расчет степени загрязнения поверхностных водоемов. Следует различать два случая:
1. Непроточная водная преграда (замкнутый водоем).
2. Проточная водная преграда.
Объем жидких отходов Vв, попадающих в замкнутый водоем, принимаем равным объему жидкости, вылившейся из хранилища [см. п. 2.2.3, формула (35)]:
Vв = V.
Для каждого из вредных веществ, содержащихся в жидких отходах, вычисляется концентрация в воде замкнутого водоема , мг/л:
где Vз - объем замкнутого водоема, м3.
Полученная концентрация сравнивается с ПДК данного вещества в воде (см. приложение 4).
Для проточного водоема удельное содержание вредного вещества в воде проточного водоема , мг/л, составит:
где Qп - расход проточного водоема, м3/сут;
Qmax - максимальный расход изливающегося из хранилища потока, м3/сут (см. п. 2.3.1).
Полученная концентрация сравнивается с ПДК данного вещества в воде.
2.5.5. При наличии соответствующих исходных данных возможно районирование площади фильтрации стоков по значениям Кф, J, Тф, Мп, , , пг. В этих случаях при определении параметров загрязнения почвы и грунтовых вод для каждого выделенного района (r) рассчитывают величины Vф(r), (r).
2.5.6. Учет сорбции, ионного обмена, окислительно-восстановительных, других физико-химических и биохимических процессов, которые происходят с вредными веществами при фильтрации стоков через почвенный слой и грунты, может привести к снижению параметров загрязнения.
2.6.1. Показатели последствий гидродинамической аварии характеризуются следующими видами опасных явлений: гибелью людей, нанесением ущерба здоровью и нарушением условий жизнедеятельности людей, разрушением и повреждением зданий и сооружений, загрязнением окружающей природной среды.
Величина показателя последствий является количественной оценкой уровня безопасности.
Исследования показали устойчивость результатов расчета показателей последствий аварии к вариации параметров, принимаемых в соответствии с допущениями, принятыми в пп. 2.2.2.2 - 2.2.2.4.
Определяемые в методике величины показателей последствий являются количественной оценкой уровня безопасности гидродинамической аварии и могут использоваться при оценке количества пострадавших людей, материальных потерь, ущерба окружающей среде, определении класса чрезвычайных ситуаций.
2.6.2. Показатели последствий силового воздействия волны прорыва на человека, здания и сооружения (гибель, нанесение ущерба здоровью и нарушение условий жизнедеятельности людей, разрушение и повреждение зданий и сооружений) определяются для территории в пределах зоны затопления, в границах которой воздействие волны опасно для жизни или здоровья человека, может вызвать разрушение и повреждение зданий и сооружений.
2.6.2.1. Показатель последствий силового воздействия волны прорыва на человека (ZN) определяется количеством людей, постоянно (N1) или временно (N2) находящихся в зоне воздействия волны прорыва, значения параметров которой равны или превышают критические значения для жизни и здоровья человека:
где Pчв - вероятность пребывания человека в зоне силового воздействия волны прорыва в течение суток.
Например, если в зоне затопления люди присутствуют круглосуточно, Pчв = 1; если в зоне затопления люди присутствуют неполные сутки, например одну смену (8 ч), - Pчв = 0,33.
В качестве критического значения параметра волны прорыва может быть принята, например, глубина потока в зоне растекания hmax ³ 1,5 м или параметры потока, приводящие к разрушению зданий и сооружений, в которых находятся люди.
2.6.2.2. Показатель силового воздействия волны прорыва Zc на здания и сооружения определяется прочностными характеристиками зданий и сооружений, а также параметрами волны прорыва (гидродинамическое давление, скорость и глубина потока):
(68)
Если φc(i) ³ φlim(i), то . Если φc(i) < φlim(i), то ,
где φc(i) - значение параметра гидродинамической волны прорыва;
φlim(i) - предельное значение параметра волны прорыва для данного вида i-го здания или сооружения (см. приложение 5);
п - количество зданий и сооружений, оказавшихся в зоне затопления.
Показатель Zc численно равен количеству зданий и сооружений, подвергшихся повреждению или разрушению.
2.6.2.3. Показатель последствий гидродинамической аварии по воздействию на окружающую среду определяется соотношением концентраций загрязняющих веществ в почве (), грунтовых водах (), в водоемах () и соответствующих предельно допустимых концентраций (СПДК).
Рассчитав показатель для отдельных вредных веществ как Zi = Ci / СПДК(i), выбирают несколько веществ, имеющих наибольшее значение Zi, и определяют суммарный показатель последствий (Zп).
Показатели определяются по каждому элементу окружающей среды - почва, грунтовые воды [24]:
(69a)
(69б)
(69в)
где k - количество суммируемых вредных веществ.
1. Леви И.И. Динамика русловых процессов. Л.: Госэнергоиздат, 1957.
2. Гончаров В.Н. Динамика русловых потоков. Л.: Гидрометеоиздат, 1962.
3. Кнороз В.С. Безнапорный гидротранспорт и его расчет // Известия ВНИИГ. 1951. Т. 44.
4. Чугаев Р.Р. Гидравлика. Л.: Энергоиздат, 1982. С. 573, табл. П-4.
5. Исследование и расчет волны прорыва из хвостохранилища Михайловского ГОКа. М.: ВНИИВОДГЕО, 1978.
6. Временные методические рекомендации по расчету зон при внезапном прорыве ограждающих дамб хвостохранилищ. Белгород: ВИОГЕМ, 1981.
7. Рекомендации по расчету охранных зон хвостохранилищ. Л.: Механобр, 1984.
8. РД 09-255-99. Методические рекомендации по оценке технического состояния и безопасности хранилищ производственных отходов и стоков предприятий химического комплекса.
9. ГОСТ 19185-73. Гидротехника. Основные понятия. Термины и определения.
10. СНиП II-89-80. Генеральные планы промышленных предприятий. М., 1990.
11. ПБ 06-123-96. Правила безопасности при эксплуатации хвостовых, шламовых и гидроотвальных хозяйств.
12. ГОСТ 25100-82. Грунты. Классификация.
13. ГОСТ 25584-90. Грунты. Методы лабораторного определения коэффициента фильтрации.
14. Геологический словарь. М.: Недра, 1978. Т. 1.
15. ГОСТ Р 22.0.05-94. Термины и определения.
16. РД 03-268-99. Порядок разработки и дополнительные требования к содержанию декларации безопасности гидротехнических сооружений на подконтрольных Госгортехнадзору России предприятиях (организациях).
17. Гидротехнические сооружения: Справочник проектировщика / Под ред. В.П. Недриги. М.: Стройиздат, 1983. 543 с.
18. Пособие по гидравлическим расчетам малых водопропускных сооружений. М.: Транспорт, 1992. 408 с.
19. Закс Л. Статистические оценивания. М.: Статистика, 1976. С. 130 - 131.
20. Кнороз В.С. Неразмывающие скорости для несвязных грунтов и факторы, их определяющие // Известия ВНИИГ. 1958. Т. 59.
21. Перечень ПДК и ОДК химических веществ в почве. М., 1993.
22. ГН 2.1.5.689-98. ПДК химических веществ водных объектов хозяйственно-питьевого и культурно-бытового водопользования.
23. Перечень ПДК вредных веществ для воды рыбохозяйственных водоемов. М., 1995.
24. СНиП 2.06.15-85. Инженерная защита территорий от затопления и подтопления. М., 1990.
25. СНиП 1.02.07-87. Инженерные изыскания для строительства. М., 1988.
26. СНиП 2.02.02-85. Основания гидротехнических сооружений. М., 1988.
27. ГОСТ 5180-84. Грунты. Метода лабораторного определения физических характеристик.
28. Мальцев В.А. Методики оценки обстановки на промышленном предприятии при чрезвычайных ситуациях. М.: ИПК Госслужбы, 1993.
Для оценки изменения плотности по глубине слоя жидкости и неконсолидированных отходов делаются допущения о нелинейной закономерности, описывающей это явление.
Предполагается, что закономерность, описывающая изменение плотности отходов по глубине слоя, имеет вид
где ρжj - плотность j-го слоя;
- глубина до j-го слоя;
а, b и k - параметры используемой закономерности.
Для определения параметров необходимы измерения плотности отходов на трех уровнях: верхнем , среднем и нижнем . В качестве параметра b используется величина плотности жидких отходов в верхнем слое, т.е.
Подставляя значение в уравнение (п. 1.1) и логарифмируя, получим
Для нижнего слоя формула (п. 1.3) будет иметь вид
Для среднего слоя формула (п. 1.3) будет иметь вид
Решая совместно уравнения (п. 1.4) и (п. 1.5), получим
Преобразуя уравнение (п. 1.6), окончательно получаем
Для определения а подставляем в выражение для k формулу (п. 1.4). После преобразования окончательно имеем
Подставляя значения k и а в уравнение (п. 1.1), получим
Для оценки изменения вязкости по глубине слоя жидкости и неконсолидированных отходов делаются допущения о нелинейной закономерности, описывающей это явление.
Предполагается, что закономерность, описывающая изменение вязкости отходов по глубине слоя, имеет вид
(п. 1.10)
где vj - вязкость j-го слоя;
- глубина до j-го слоя;
а, b и k - параметры используемой закономерности.
Для определения параметров необходимы измерения вязкости отходов на трех уровнях: верхнем vв, среднем vс и нижнем vн.
В качестве параметра b используется величина вязкости жидких отходов в верхнем слое, т.е.
b = vв. (п. 1.11)
Вывод формулы (п. 1.12)
где (п. 1.13)
ведется аналогично выводу формулы (п. 1.9) для плотности.
* Гидравлический показатель русла.
** Значения относительной глубины, определяемые в п. 2.3.2 по формулам (49а) - (49г).
Наименование вещества |
ПДК, мг/кг |
Лимитирующий признак вредности*** |
|
1 |
Бензол |
0,3 |
воздушно-миграционный |
2 |
Мышьяк |
2,0 |
транслокационный |
3 |
Нитраты |
130 |
воздушно-миграционный |
4 |
Ртуть |
2,1 |
транслокационный |
5 |
Свинец |
32,0 |
общесанитарный |
6 |
Серная кислотаа |
160 |
общесанитарный |
7 |
Толуол |
0,3 |
воздушно-миграционный |
8 |
Формальдегид |
7,0 |
воздушно-миграционный |
9 |
Хлористый калийб |
560 |
водно-миграционный |
10 |
Медь |
3,0* |
общесанитарный |
11 |
Цинк |
23,0* |
транслокационный |
12 |
Хром |
6,0* |
общесанитарный |
13 |
Никель |
4,0* |
общесанитарный |
14 |
Сероводород |
0,4 |
воздушно-миграционный |
15 |
Фтор |
2,8* |
транслокационный |
16 |
Сероводород |
0,4 |
воздушно-миграционный |
17 |
Фтор |
10,0** |
транслокационный |
18 |
Бензинв |
0,1 |
воздушно-миграционный |
а ПДК серной кислоты может быть использована для оценки загрязнения почвы сульфат-ионом.
б ПДК хлористого калия может быть использована для оценки загрязнения почвы хлорид-ионом.
в ПДК бензина может быть использована для ориентировочной оценки загрязнения почвы нефтепродуктами с низкой температурой кипения (до 200 ºС).
* Подвижная форма элемента, извлекаемая из почвы ацетатно-аммонийным буферным раствором рН 4,8.
** Водорастворимая форма.
*** Лимитирующий признак вредности - признак, характеризующийся наименьшей безвредной концентрацией вещества (при использовании различных тестов).
Лимитирующие признаки вредности в почве:
воздушно-миграционный - характеризует переход вещества из почвы в атмосферу;
транслокационный - характеризует переход вещества из почвы через корневую систему в зеленую массу и плоды растений;
общесанитарный - показатель, характеризующий влияние химического вещества на самоочищающую способность почвы.
Наименование вещества |
ПДК в воде, мг/л |
||
водных объектов хозяйственно-питьевого и культурно-бытового водопользования |
водоемов рыбохозяйственного назначения |
||
1 |
2 |
3 |
4 |
1 |
Аммиак (по азоту) |
2,0 (с.-т.)* |
0,05 (токс.) |
2 |
Бензол |
0,5 (с.-т.) |
0,5 (токс.) |
3 |
Железо |
0,3а (орг.-окр.) |
0,1 (токс.) |
4 |
Метанол |
3,0 (с.-т.) |
0,1 (с.-т.) |
5 |
Мышьяк |
0,05а (с.-т.) |
0,05 (токс.) |
6 |
Натрий |
200 (с.-т.) |
120 (с.-т.) |
7 |
Нитриты |
3,3 (с.-т.) |
0,08 (токс.) |
8 |
Нитраты |
45 (с.-т.) |
40 (с.-т.) |
9 |
Ртуть |
0,0005в |
Отсутствие |
10 |
Свинец |
0,03 (с.-т.) |
0,1 (токс.) |
11 |
Сульфаты |
500 (орг.-привк.) |
100 (токс.) |
12 |
Толуол |
0,5 (орг.-зап.) |
0,5 (орг.) |
13 |
Фенол |
0,001б (орг.-зап.) |
0,001 (рыб. хоз.) |
14 |
Формальдегид |
0,05 (с.-т.) |
0,1 (токс.) |
15 |
Хлориды |
350 (орг.-привк.) |
300 (с.-т.) |
16 |
хпк** |
15; 30з |
- |
17 |
Цинк |
1,0 (общ.) |
0,01 (токс.) |
18 |
Нефтепродукты |
0,3 (орг.-пленка) |
0,05 (рыб. хоз.) |
19 |
Полифосфаты |
3,5в (орг.) |
2,0г (токс.) |
20 |
Цианид-ион |
0,035д (с.-т.) |
0,05 (токс.) |
21 |
Фторид-ион |
0,7 - 1,5ж (с.-т.) |
0,05е (токс.) |
а с учетом валового содержания всех форм;
б эта ПДК для суммы летучих фенолов при условии применения хлора для обеззараживания воды, в иных случаях ПДК = 0,1 мг/л;
в по РО4;
г по Р;
д цианиды простые и комплексные (за исключением цианоферратов) в расчете на цианид-ион;
е в дополнение к фоновому, но не выше их суммарного содержания 0,75 мг/л;
ж для климатических районов I - II - 1,5 мг/л;
III - 1,2 мг/л;
IV - 0,7 мг/л;
з для хозяйственно-питьевого водоснабжения 15 мг О2/л; для культурно-бытового - 30 мг О2/л.
* В скобках приведен лимитирующий признак вредности [признак, характеризующийся наименьшей безвредной концентрацией вещества (при использовании различных тестов)]:
с.-т. - санитарно-токсикологический (характеризует влияние химического вещества в воде на здоровье человека);
общ. - общесанитарный [характеризует влияние химического вещества на самоочищение воды в водоемах (процессы биохимического окисления, сапрофитную микрофлору и т.п.)];
орг. - органолептический (привкус, запах, окраска);
токс. - токсикологический.
** Химическая потребность в кислороде (ХПК) - интегральный показатель загрязнения органическими веществами (количество кислорода, эквивалентное количеству расходуемого окислителя, необходимое для восстановления всех восстановителей, содержащихся в воде).
Параметры волны прорыва, вызывающие виды разрушений на объекте |
||||||||
легкие |
слабые |
средние |
сильные |
|||||
h, м |
U, м/с |
h, м |
U, м/с |
h, м |
U, м/с |
h, м |
U, м/с |
|
Промышленные здания с легким металлическим каркасом |
1,5 |
0,5 |
2,0 |
1,0 |
4,0 |
2,0 |
5,0 |
2,5 |
Промышленные здания бескаркасные |
1,5 |
0,5 |
2,0 |
1,0 |
4,0 |
2,0 |
5,0 |
2,5 |
Кирпичные административные и вспомогательные здания |
1,5 |
0,5 |
2,0 |
1,0 |
3,0 |
1,5 |
4,0 |
2,0 |
Деревянные здания в 1 - 2 этажа |
1,0 |
0,5 |
1,0 |
1,0 |
2,5 |
1,0 |
3,5 |
1,50 |
Сборные и легкие деревянные здания |
1,5 |
0,5 |
2,0 |
1,0 |
2,5 |
1,5 |
3,5 |
1,5 |
Емкости, трубопроводы на опорах |
1,0 |
0,5 |
1,0 |
1,0 |
2,0 |
2,0 |
4,0 |
4,0 |
Сооружения на подвижных опорах |
1,5 |
0,5 |
2,5 |
1,0 |
2,5 |
1,5 |
3,5 |
2,5 |
Мосты, эстакады |
- |
- |
- |
- |
0,5* |
1,0 |
1 - 2* |
1,5 - 2,5 |
Дороги с твердым покрытием |
- |
- |
- |
- |
- |
- |
1,0 |
1,8 - 2,5 |
Автомобильный и железнодорожный транспорт |
- |
- |
- |
- |
1,0 |
1 - 1,5 |
1,5 |
2,0 |
* Высота потока выше проезжей части сооружения.
_________________________________________________________ |